
© Copyright EmTec Innovative Software 2000 - 2002

PyroTrans

(PyroServer, PyroBatch)

File Transfer and Directory Synchronization
over Modem, ISDN, Network and Internet

This document describes the concept behind PyroTrans. This means that this document is
not a full fledged manual. Its intent is to help the user to understand the idea behind the

program, to show possible uses and point out features.

If the description of a feature finds your interest, please check out the details in the help text
of the software itself (especially the Script Commands help in PyroBatch).

If you intend to use PyroBatch in a project and if you have questions, please do
not hesitate to contact m.schmidt@emtec.com via email.

© Copyright EmTec Innovative Software 2000 - 2002

The Concept Behind PyroTrans

PyroTrans is a software to transfer files between computers, either manually or
automatically. The computers can be connected through a LAN, through the telephone
system (modem, ISDN, GSM hardware) or through a IP based network (LAN or internet).
Typically such file transfers occur between a company headquarter and branch offices or
field staff (where it’s compression technology is especially helpful when GSM modems are
used). Of course PyroTrans can also be used between a company and it’s customers or to
transfer data to a backup location.

The Parts of PyroTrans

PyroServer: The so called server is a purely passive component of the packet. A server
waits for incoming connections, checks user rights an can send or receive files upon
request. All initiative for such action however, comes from the active side of the connection,
either PyroClient, PyroBatch or 3rd party Eurofile transfer software. The server can assign a
directory to each user and can limit access (read, write, delete, ...) per user.
PyroServer/Pro: Same as PyroServer, but with additional functions like encryption, multiple
concurrent user logins, callback option, etc.
PyroBatch: Automated file transfer. PyroBatch executes a list of predefined commands to
send or receive files or execute commands on the server, etc.
PyroClient: Manually controlled file transfer. Using PyroClient a use can connect to a server
and transfer or delete or rename files using the mouse or menu commands.

When using these terms however, it is important to understand, that the installation of
PyroServer and PyroClient do not necessary correspond with the client and server
computers of your company. Although, it is likely that the a server at the headquarter will run
a PyroServer waiting for PyroBatch calls from the branch offices, but it is also possible that
the headquarter runs PyroBatch to download data from PyroServers installed in the other
locations.
For better understanding, PyroServer could be called PyroPassive and PyroBatch and
PyroClient could be called PyroActive.

© Copyright EmTec Innovative Software 2000 - 2002

Configuration/Implementation Samples

Transfer from branch offices to headquarter (scenario 1):
Description: A program runs at night in the branch offices of a company and transfers
status reports to the company headquarter.
Implementation: PyroServer is installed in the headquarter with a user entry per branch
office. In the branch office at night the Windows scheduler calls PyroBatch with a predefined
batch file to connect to the headquarter and send the files.

Transfer from branch office to headquarter (scenario 2):
Description: At night, a program in the headquarter calls the branch offices to download
sales data.
Implementation: The branch offices run PyroServer, each with just one user entry. In the
headquarter there is a PyroBatch script file for the call to the branch offices and download of
the data, which are started via scheduler or via another software.

Transfer of data from field workers to headquarter:
Description: After visits to the customer, field workers transfer the orders to the sales
department in the headquarter.
Implementation: The headquarter runs PyroServer. The field workers have laptops with
GSM modems and a sales software. After entering the customer’s order in the sales
software, the software creates an order file. The employee now uses PyroClient to connect
to the company and uploads the sales file via drag and drop.
Alternate Implementation: Same as above, but the sales software has a menu entry which
starts PyroBatch and automatically uploads the file to the sales department..

Printing shop:
Description: Smaller customers send print jobs and designs manually while some large
customers collect jobs during the day and send them automatically at night..
Implementation: The print shop runs PyroServer. The customers either use PyroClient to
send a job-file for printing when necessary or collect the file in a directory and upload it it at
night automatically. The server has a public user entry where all the small jobs go and a
user entry (and separate directory) for each large customer.

Transfer from branch office to headquarter (scenario 3):
Description: As in scenario 1 but early in the morning the headquarter sends back files with
processed status information to all branch offices.
Implementation: Headquarter and branch office have PyroClient and Server installed .
During the night the branch offices make scheduled PyroBatch calls to send the information.
In the morning the headquarter runs a large PyroBatch script to send back the files with
processed status information.

© Copyright EmTec Innovative Software 2000 - 2002

PyroBatch Feature Overview

How to Start Scripts
PyroBatch scripts can be started manually from PyroBatch’s menu or directly from the
command line as PYROBATCH /EXEC:<scriptname>

Overview of script-commands

Connect: connect to PyroServer
Disconnect: end connection
RequestCallback request a call back from the server
LocalChDir: change directory (on the PyroBatch file system)
RemoteChDir: change directory (on the PyroServer file system)
LocalRename: rename file on the PyroBatch file system
RemoteRename: rename file on the PyroServer file system
LocalDelete: delete file on the PyroBatch file system
RemoteDelete: delete file on the PyroServer File system
Get: get file from PyroServer
Put: send file to PyroServer
GetMove: get file from PyroServer and delete remote file
PutMove: send file to PyroServer and delete locally
GetDir: copy whole directory from PyroServer
PutDir: send whole directory to PyroServer
GetSync: synchronize directory between remote and local
PutSync: synchronize directory between local and remote
LocalExec: execute local command (on PyroBatch machine)
RemoteExec: execute remote command (on PyroServer machine)
OnError: select error handling
ForEach: executed command multiple times
Milestone: make entry in milestone log
SetRetry: set retry count and delay for failed commands
TerminateAfterScript: select program termination after end of script
Comments: comments are placed behind //, # or ;

A detailed description to each command is available from the help menu of PyroBatch.

© Copyright EmTec Innovative Software 2000 - 2002

Script Style
The PyroBatch script language uses a flexible syntax which allows you to write commands in
various formats. This lets you write scripts in a form which is similar to other program
languages you may know, e.g. Windows Batch Files, Visual Basic, Perl.
The following samples are all legal forms of a PutMove command:

PUTMOVE SALES.DAT SALES2.DAT

PutMove “Sales.dat”, “Sales2.dat”

PutMove(“Sales.dat”, “Sales2.dat”)

Definition and Use of Command Line Macros
If a similar script is necessary for multiple calls, it is possible to use a common script and
insert macros like $(phonenumber) or $(password) in the places in which the hosts
require different values. When starting PyroBatch it is possible to define the actual values
for these as in

PYROBATCH /EXEC:transfer.cmd /D:phonenumber=5554467855 /D:password=secret
/D:hostname=branch01

The transfer script might then look like this:
TerminateAfterScript 1

Connect $(phonenumber) pyrotrans $(password)

LocalChDir c:\incoming\$(hostname)

RemoteChDir outgoing

GetMove sales.dat $(hostname).dat

Disconnect

Error Handling
If a command produces an error, the script will immediately be aborte and the current
connection (if any) terminated. The reason for the error will be documented in the script log.
Error codes and error classes (groups of error codes) are described in the PyroBatch online
help.
It is possible to tolerate errors in specific commands by putting a dash in front of the
command name (e.g. –LocalDelete “alt.dat” .if a file is to be deleted that may or
may not exist.) Further, the error handling can be controlled by the OnError command
(see the examples below).

Retrying Failed Commands
If an error occurs in a script (and the script terminates with an error code) that was started
from the command line, you can add the /RETRY: parameter on the command line to
specify that the whole script should be executed again.
Alternately, within a script it is possible to precede a command with an @ character, to retry

© Copyright EmTec Innovative Software 2000 - 2002

just this command if it fails (e.g. if making a connection fails because it is busy). The
number of retries and their delay can be configured inside the script with the SetRetry
command.. However, the use of @ only makes sense, if you expect that a failed command
may succeed later.

Logging

Script log: For each run of a script PyroBatch will write a detailed log (multiple entries per
executed command including result and possible sub-results). The log is formatted in a
standardized way which can easily be parsed by another application (e.g. by a sales
application to determine if the transfers went ok or not). The format itself is described in the
online help.

Milestones: If necessary (or desired) the script can generate a so called milestone file which
logs the state of the script at certain important points of the script (e.g. a script that calls
multiple branch offices could mark the success at the end of processing each office).
Milestone files have only a few entries, in fact exactly one line per milestone command and
can very easily be scanned or parsed to determine the success of a script.

Script-Processing with PyroBatch

Sample Scripts for Configuration Samples

Headquarter with Branch Office (Scenario 1):

This script calls the headquarter and uploads the local file called sales.dat as location1.dat
and then deletes it on the local computer.

// Call Headquarter, and Login as location1

Connect 05553456789 location1 secret

// Upload File sales.dat with name location1.dat

LocalChDir c:\outbox

-LocalDelete location1.dat

LocalRename sales.dat location1.dat

Put location1.dat

LocalDelete location1.dat

// Endconnection

Disonnect

© Copyright EmTec Innovative Software 2000 - 2002

Headquarter with Branch Office (Scenario 1), alternate:

Same but more elegant.

Connect 05553456789 location1 secret

PutMove c:\outbox\sales.dat location1.dat

Disonnect

Headquarter with Branch Office (Scenario 2):

Headquarter calls three locations and downloads their sales.dat as location1/2/3.dat.

// Call from Headquarter to location 1

// Download of the file sales.dat with name location1.dat

Connect 05553456789 comanyabc secret

GetMove sales.dat c:\inbox\location1.dat

Disconnect

// Call from Headquarter to location 2

// Download of the file sales.dat with name location2.dat

Connect 05556666666 comanyabc secret

GetMove sales.dat c:\inbox\location2.dat

Disconnect

// Call from Headquarter to location 3

// Download of the file sales.dat with name location3.dat

Connect 05559876543 comanyabc secret

GetMove sales.dat c:\inbox\location2.dat

Disconnect

Headquarter with Branch Office (Scenario 2) Ignoring Error (Excerpt):

© Copyright EmTec Innovative Software 2000 - 2002

This variant of the example above uses OnError to make sure that an error in one location
will not abort the processing of the whole script (and thus ignore the later locations).

OnError Ignore

Connect 05553456789 comanyabc secret

GetMove sales.dat c:\inbox\location1.dat

Disconnect

(rest of script as above)

Headquarter with Branch Office (Scenario 2) with Error Handling (Excerpt):

This example uses OnError SkipTo to skip to the next location when an error occurs..
OnError is used in a way that Disconnect will be processed or skipped, depending on the
online state (i.e. depending on if connect was successful).

// Call of Headquarter to location 1

OnError SkipTo NaechsteLocation

Connect 05553456789 comanyabc secret

OnError SkipTo Endconnection

GetMove sales.dat c:\inbox\location1.dat

; more things to do online could be done here

:Endconnection

Disconnect

:NaechsteLocation

// Call of Headquarter to location 2

OnError SkipTo NaechsteLocation

Connect 0555666666 comanyabc secret

OnError SkipTo Endconnection

GetMove sales.dat c:\inbox\location2.dat

; more things to do online could be done here

:Endconnection

Disconnect

:NaechsteLocation

© Copyright EmTec Innovative Software 2000 - 2002

// Call of Headquarter to location 3

OnError SkipTo Ende

Connect 05559876543 comanyabc secret

OnError SkipTo Endconnection

GetMove sales.dat c:\inbox\location2.dat

; more things to do online could be done here

:Endconnection

Disconnect

:Ende

Headquarter with Branch Office (Scenario 2) with Elegant Error Handling:

This example solves the same problem as above, but does away with most of the OnError
commands by using a trick. It also uses OnError SkipTo to skip to the next location.
If an error occurs it jumps to the next “:Nextlocation” label. “:Nextlocation” has been placed
before the Disconnect command, to terminate the connection if the error occurs while we
are online. However, if the error occurs in the connect command the program would not be
in online state when jumping to the disconnect and disconnect would produce an error on its
own (causing the program to yet again jump down to the next label). However, the error to
disconnect while the program is not online, is tolerable (in fact in this solution it is
somewhat planned) so a hyphen is placed before the disconnect command to ignore it’s
error state (in other words, disconnect if online but do not complain if you are already offline).

OnError SkipTo Nextlocation

// Call of Headquarter to location 1

// Download der File sales.dat with name location1.dat

Connect 05553456789 comanyabc secret

GetMove sales.dat c:\inbox\location1.dat

:Nextlocation

-Disconnect

// Call of Headquarter to location 2

// Download der File sales.dat with name location2.dat

Connect 05556666666 comanyabc secret

GetMove sales.dat c:\inbox\location2.dat

:Nextlocation

-Disconnect

© Copyright EmTec Innovative Software 2000 - 2002

// Call of Headquarter to location 3

// Download der File sales.dat with name location3.dat

Connect 05559876543 comanyabc secret

GetMove sales.dat c:\inbox\location2.dat

:Nextlocation

-Disconnect

Headquarter with Branch Office (Scenario 2) with Error Checking and Milestones:

The error handling is the same as in the previous example (see above).
The milestone commands before each :Nextlocation label will write the error status to
file. This is either #200 OK if all went well (error status from GetMove) or the error (eg.
#400 BUSY) which caused OnError to skip to the label (which passes and processes the
Milesone command on the way down).

OnError SkipTo Nextlocation

Milestone Filename transfer.log

// Call of Headquarter to location 1

// Download der File sales.dat with name location1.dat

Connect 05553456789 comanyabc secret

GetMove sales.dat c:\inbox\location1.dat

:Nextlocation

-Disconnect

Milestone Location1

// Call of Headquarter to location 2

// Download der File sales.dat with name location2.dat

Connect 05556666666 comanyabc secret

GetMove sales.dat c:\inbox\location2.dat

:Nextlocation

-Disconnect

Milestone Location2

// Call of Headquarter to location 3

// Download der File sales.dat with name location3.dat

Connect 05559876543 comanyabc secret

GetMove sales.dat c:\inbox\location2.dat

:Nextlocation

Milestone Location3

© Copyright EmTec Innovative Software 2000 - 2002

